- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Filippova, Nina (2)
-
Aerts, Rien (1)
-
Agathokleous, Evgenios (1)
-
Alatalo, Juha (1)
-
Alonso, Rocío (1)
-
Althuizen, Inge (1)
-
Asplund, Johan (1)
-
Björnsdóttir, Katrín (1)
-
Bokhorst, Stef (1)
-
Carbognani, Michele (1)
-
Casanova‐Katny, Angelica (1)
-
Christiansen, Casper_T (1)
-
Clark, Karin (1)
-
Crowther, Thomas_W (1)
-
Dorrepaal, Ellen (1)
-
Genxu, Wang (1)
-
Hassan, Ibrahim_A (1)
-
Hofgaard, Annika (1)
-
Hollister, Robert_D (1)
-
Jónsdóttir, Ingibjörg_Svala (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Molecular clouds are supported by turbulence and magnetic fields, but quantifying their influence on cloud life cycle and star formation efficiency (SFE) remains an open question. We perform radiation magnetohydrodynamic simulations of star-forming giant molecular clouds (GMCs) with UV radiation feedback, in which the propagation of UV radiation via ray tracing is coupled to hydrogen photochemistry. We consider 10 GMC models that vary in either initial virial parameter (1 ≤ α vir,0 ≤ 5) or dimensionless mass-to-magnetic flux ratio (0.5 ≤ μ Φ,0 ≤ 8 and ∞ ); the initial mass 10 5 M ⊙ and radius 20 pc are fixed. Each model is run with five different initial turbulence realizations. In most models, the duration of star formation and the timescale for molecular gas removal (primarily by photoevaporation) are 4–8 Myr. Both the final SFE ( ε * ) and time-averaged SFE per freefall time ( ε ff ) are reduced by strong turbulence and magnetic fields. The median ε * ranges between 2.1% and 9.5%. The median ε ff ranges between 1.0% and 8.0%, and anticorrelates with α vir,0 , in qualitative agreement with previous analytic theory and simulations. However, the time-dependent α vir ( t ) and ε ff,obs ( t ) based on instantaneous gas properties and cluster luminosity are positively correlated due to rapid evolution, making observational validation of star formation theory difficult. Our median ε ff,obs ( t ) ≈ 2% is similar to observed values. We show that the traditional virial parameter estimates the true gravitational boundedness within a factor of 2 on average, but neglect of magnetic support and velocity anisotropy can sometimes produce large departures from traditional virial parameter estimates. Magnetically subcritical GMCs are unlikely to represent sites of massive star formation given their unrealistic columnar outflows, prolonged lifetime, and low escape fraction of radiation.more » « less
-
Schwieger, Sarah; Dorrepaal, Ellen; Petit_Bon, Matteo; Vandvik, Vigdis; le_Roux, Elizabeth; Strack, Maria; Yang, Yan; Venn, Susanna; van_den_Hoogen, Johan; Valiño, Fernando; et al (, Ecology Letters)ABSTRACT Empirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta‐analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.2° of warming is required for a significant increase in decomposition. Overall, warming did not have a significant effect on decomposition at a global scale. However, we found that warming reduced decomposition in warmer, low‐moisture areas, while it slightly increased decomposition in colder regions, although this increase was not significant. This is particularly relevant given the past decade's global warming trend at higher latitudes where a large proportion of terrestrial carbon is stored. Future changes in vegetation towards plants with lower litter quality, which we show were likely to be more sensitive to warming, could increase carbon release and reduce the amount of organic matter building up in the soil. Our findings highlight how the interplay between warming, environmental conditions, and litter characteristics improves predictions of warming's impact on ecosystem processes, emphasising the importance of considering context‐specific factors.more » « less
An official website of the United States government
